CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance
نویسندگان
چکیده
منابع مشابه
Charge-density studies of energetic materials: CL-20 and FOX-7.
Experimental electron densities and derived properties have been determined for the two energetic materials CL-20 (3,5,9,11-tetraacetyl-14-oxo-1,3,5,7,9,11-hexaazapentacyclo-[5.5.3.02,6.04,10.08,12]pentadecane), and FOX-7 (1,1-diamino-2,2-dinitroethylene) from single-crystal diffraction. Synchrotron data extending to high scattering angles were measured at low temperature. Low figures-of-merit ...
متن کاملSensitivity and performance of azole-based energetic materials.
Imidazole, pyrazole, 1,2,3-triazole-, 1,2,4-triazole-, and tetrazole-based energetic materials are theoretically investigated by employing density functional theory (DFT). Heats of formation (ΔfH(0)'s) for the studied compounds (298 K) in the gas phase are determined at the B3P86/6-311G (d, p) theory level through isodesmic reactions. The bond dissociation energies (BDEs) corresponding to NO2, ...
متن کاملN-oxide 1,2,4,5-tetrazine-based high-performance energetic materials.
One route to high density and high performance energetic materials based on 1,2,4,5-tetrazine is the introduction of 2,4-di-N-oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5-tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N-oxide fu...
متن کاملKinetic stability and propellant performance of green energetic materials.
A thorough theoretical investigation of four promising green energetic materials is presented. The kinetic stability of the dinitramide, trinitrogen dioxide, pentazole, and oxopentazole anions has been evaluated in the gas phase and in solution by using high-level ab initio and DFT calculations. Theoretical UV spectra, solid-state heats of formation, density, as well as propellant performance f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecules
سال: 2020
ISSN: 1420-3049
DOI: 10.3390/molecules25184311